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The mechanism of the overheating instability of magnctohydrody-
namic flows is as follows. If the electrical conductivity of the
medium depends on the temperature, then a small local increase in
temperature may lead, under specific conditions, to an increase in
iiberation of Joule heat energy, to a further temperature rise, and so
to instability,

The overheating instability has been studied before (1, 2) for a uni-
form unperturbed temperature and without account for the effect of
the boundaries of the region, It has been discovered that the growth
increment of the disturbances increases as the wavelength increases.
However, it is clear that heat conduction through the boundaries of
the region occupied by the conducting medium may effect the
development of perturbations, primarily of long wavelength per-
turbations, Below we will examine the simplest problem of the
stability of temperature distribution for an electric discharge in a gas
between two planes.

We will consider the flow of an incompressible
medium with constant velocity V = e, U (it may be
taken as zero in the appropriate coordinate system)
between two flat electrodes y = +L, on which constant
temperatures and electric potentials are maintained,
Let such a temperature distribution be already at-
tained in the flow so that all the Joule heat is con-
ducted away through the walls and the temperature
does not vary in the direction of the flow. Such an
assumption may be made if the length of the elec -
trodes is much larger that a certain quantity deter-
mined by the channel width, the thermal conductivity
and the flow velocity. We shall neglect the effect of
the magnetic field on the electric current perturba-
tions under consideration, so that the instability will
be of a purely "thermal™ nature and will not be con-
nected with perturbations of the field by velocity.
The instabilities still have this character even in
the presence of a uniform magnetic field, when we
consider perturbations with a wave vector k perpen-
dicular to the direction of the field. Actually, in this
case

rot (j » H) = (HV)j——Hdivj:l’},

and the magnetic forces only lead to a redistribution
of pressure in the medium,

The temperature of the unperturbed flow Ty is
determined from the equation
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Here » is the constant thermal conductivity, o,
is the electrical conductivity, j is the unperturbed

current density, 2¢¢ is the difference of electrode
potentials.

One can show, using Maxwell's equations and
Ohm's law and making simple estimates, that if the
quantity L%/ wc? (where w is the characteristic fre-
quency of the problem) is much less than unity, then
the perturbations of the electric field E = Vg pos-
sess a potential. The equation for ¢ is obtained
from the equation div j = 0 and Ohm's-law j = oE.
The second equation of the problem (as regards
temperature) comes from the energy equation.

We shall introduce the following dimensionless
quantities (the primes will henceforth be omitted):
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Here o* = o(T*) is some characteristic value of
the conductivity, and T* the corresponding tempera -
ture. Equation (1) and the linearized équations for
the fluctuations of temperature T and potential ¢
then assume the form
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For simplicity, in equations (2)—(4) it is assumed that

g=o0 T, W], do [ dT = (do | dT)r=1.u)-

We note that the two final terms of (3) represent
the perturbation of Joule heat liberation, and the
expression in parertheses in (4) represents the
components jy and jy of the perturbed current den-
sity, respectively.

System (2), which determines the stationary tem-
perature profile in the channel, can always be sol-
ved in quadratures. Similar nonlinear problems
(but without the integral factor on the right-hand
side) arise in the theory of thermal breakdown of
dielectrics [3], the theory of thermal explosion [4],
and in the investigation of Couette flow with variable
viscosity {5]. Employing familiar methods, explained
for example in [5], we can show that an inequality
of the form m(Tyy,) < @2 = M(T)y) is valid for the pa-
rameter af, where Ty, = Ty(0) is the maximal tem-
perature and the form of the functions m(Ty,), M(T,)
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is determined by the function G(T). In particular, the
function M(Ty,) - 0 for Ty, — =, if ¢ increases suf-
ficiently rapidly as T increases, and consequently

a} is bounded from above and also falls off to zero for
Ty — «. This also means that the solution of problem
(2) exists only for values of ag less than some critical

value. The greatest possible values of af for certain
functions o(TYy are found in (3, 6].
We shall further consider particular solutions
of the system (3), (4), having the form
T =06 (y) eikx—u, /x = (y) plix=2t |

We shall then have for the functions O, f,

O + (5 k)04 29 =0, (5)
(¥) — ks + o” (%%—8) =0, 6)
0 (+1) =0, Y(+£1) =0. (7

In stability investigations we may consider the
function Ty(y) and determine the corresponding func-
tion o(Ty) from Eq. (2).

Expressing the coefficients in (5), (6) in terms
of Ty, we find

6"+ (A —h+ )0+ 29 = 0, (8)
L Tod\ _j2. ¥
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The problem consists in finding, for given Ty(y)
and k, such values of A for which there exists a non-
trivial solution of Eq. (8), (9) satisfying boundary
conditions (7). In this connection, the value of A
with the smallest real part is of the greatest inter~
est.

If the system (8), (9) has a solution 6 (y), ¥ (v)
for a some A, then 6(=y), —¥(~y) is also a solu-
tion corresponding to the same A. Thus, when one
particular solution corresponds to a given A

either 6(—y) =0(y), P{—y)=—v{y), (10)
or 8(—y)=—0(), P (—y) =9 (11

If there are several particular solutions, then
they may always be chosen so that one of the Eq.
(10), (11) is satisfied.

We shall treat the problem under consideration
in two limiting cases~—for very large and for very
small wavelengths.

Small values of k correspond to large wave-
lengths, * Neglecting terms in (8), (9) containing
k? and integrating (9) with boundary conditions (7)
taken into account, we find

1

Lo
SAT%:-Ody. (12)

_ Ty" Ty
L N Py Ay

*We can show that in this case the investigation is
valid for a compressible medium also.

The integral on the right-hand of {12} determines
the perturbed current density jy correct to a coef-
ficient.

Keeping in mind Eq. (12), we obtain

1
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from Edq. (8), or
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6(+1)=0. (14)

This boundary value problem will not be Hermi-
tian in the general case.

In accordance with (10), (11) and the remark made
above, we need consider only even and odd solutions
of Eq. (13). Its last term is zero for odd solutions,
so that '

" Ty

8 +(x-———)e— 8(+1)=0. (15)
This problem is Hermitian and all its eigenvalues
A are real. For A = 0 the only odd solution of (15)
is © = T¢'. In view of Eq. (2) and the inequality ¢ = 0,
we have T(;(l) < 0, Thus, for ©(1) to vanish, we must
have A > 0,

Thus, all odd perturbations are unstable and decay
exponentially with time.

It is impossible to carry out an investigation of
stability in the general form for even solutions of
Eq. (14).

In what follows we shall confine ourselves to two
particular cases of conductivity as a function of
temperature, when

s (T) = AefT (A, B = const) , (186)

or

a? 1

s(T) = BT (B, 3 =const)- (17)

When o(T) is determined by Eq. (16), T¢'/T; =
= —fTy" and problem (14) becomes Hermitian. All
its eigenvalues are real and for @y = 0 positive. On
variation of the parameter «, the passage of one of
the eigenvalues A through zero corresponds to the
transition to instability.

We shall show that if a simple eigenvalue A pas -
ses through zero for some value of a parameter
when the parameter is varied, then for the pur-
poses of solving Eq. (2) this value corresponds to
a bifurcation point, and, on the other hand, A = 0
corresponds to a bifurcation point. It follows from
Eq. (2) that the difference of the two solutions 6 =
=T — T, satisfies the equation

R ; -
0 =— o {G(T:—i— 5 ) s(Tf—J]A 5 — s(im [_S ofiﬂl“/o)] s

We shall introduce a parameter which charac-
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terizes unambiguously the solutions T, which are
being investigated for instability. The maximal tem~
perature T, = Ty (0) may be chosen as such a para-
meter. If Eq. (18) is further transformed into an
integral equation, taking ©%(y) as the new unknown,
we may make use of theorems contained in [7].

We shall consider the following equation:

1
g (L g (4B o,
—1 —1

8(+1)=0, (19)

together with Eq. (18).

Here ¢ and do/dT depend on Ty(y). For u = 1 Eq.
(19) is the result of linearizing (18) and coincides with
(14), if we set A = 0 in the latter. If the simple eigen-
value p of problem (19) passes through unity at the
point Ty, = Tyy* on variation of T, then on the
basis of Theorems 2.1, Ch. IV, and 4.7, Ch. II, of
[7] we may conclude that T, = T\,* is a bifurcation
point of the solutions of Eq. (18). The transitions of
u through unity (in problem (19)) and of A through
zero (in problem (14)) come about simultaneously.

In order to show this let us suppose that T, differs
little from T % so that (14) and (19) may be writ-
ten in the form

L8 = AL — A8, L8 = AL8 — (p — 1) 0", (20)
where L is an operator corresponding to Ty, = T, ¥,
AL is a "perturbation™ of the operator caused by
variation of Ty,. Equations (20) are solvable if their
righthand sides are orthogonal to the eigenfunctions
of the operator conjugate with L, and in the given
case coincident with L. Thus, for Tm close to Tm*,
we have

"1 1
A & @dy = (1 —p) SB""dy. 1)

1 1

It follows from Eqg. (21) that the transition to in-
stability (passage of A through zero) is associated
with the bifurcation of the solutions of Eg. (2). As
investigation of Eq. (2) shows, the bifurcation point
of its solutions under condition (16) is the only
point [3] of a maximum of the function ay(Ty,) which
exists for g > 0 and is absent for = 0.If 3 > 0,
then there are two solutions of problem (2) for ¢ <
< @g(Tm*), and for oy > 0y(Ty*) no solution exists,
whence it follows [7] that the indices of the respec-
tive fixed points of the vector fields corresponding
to Eq. (2) in the Banach space of the functions ©"
have opposite signs, and thus when Ty, is varied the
quantity u passes through unity at the point T = Tpy*,
and A passes through zero, in accordance with that
has gone before. Since the temperature distribution
T, (y) is known to be stable for values of o, close to
zero, it follows from the explanation just given that
it will be stable for Ty < Tyy* and unstable for Ty, >
> Tm*. However, if g8 < 0, so that ¢ (Tyy,) is a mono-
tonis function, then the temperature distribution
Ty(y) will be stable for any value of Tyy. Thus for

B < 0 the solution of Eqg. (2) is always stable, and for
B > 0 stable only for T, < T * For T, > T, * the
temperature distribution is unstable with respect to
symmetric perturbations of large wave length.

We shall now treat the same problem for a hyper-
bolic law of conductivity variation (17). It follows
from Eq. (2) that

chpy. (22)
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Setting these expressions in (13), we obtain

" B%chdy
o+ —ph0+ 7 Et =0,

(£ 1) =0 (J: g efzy:1). (23)
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Since only those solutions of (23) which are even
with respect to y are of interest, and, moreover,
only those in which the integral in the third term is
nonzero, we may normalize © making the additional
requirement that J = 1.

The solution of problem (23} which satisfies the
boundary conditions has the form

(2% = A —B?). (24)

6= B3cth B fcos ay ch By
- a2+32(cosa - ch[3>

The condition J = 1 for a or A gives the equation

2B%cth B <tga thB) — 1. (25)

@B\ a B

Whence, after simple transformation,

tg 3p* 4 a?
g 2;;“ th. (26)

The latter equation has extraneous roots a =
= +if, since the transition from (25) and (26) involves
multiplication by a® + g2,

For 8 — 0 all roots a, of Eq. (26) which do not
tend to zero are real and lie in the neighborhood of
the numbers apg = 7@ — 1/2) n =0, +1, £2,...),
making tg e infinite, Expanding the left-hand side
of (26) in a series in g, it is not difficult to verify
that this equation does not have roots other than
a = +if tending to zero for g — 0, We shall now
trace how the roots of (26) vary with variation of
B. As a result of the continuous dependence of (26)
on B no new root can arise at a finite point of the
complex plane a@ when § is varied. It is also easy to
see that no new roots can come from infinity. Thus
it suffices to investigate the behavior of the roots
an as Bincreases from zero. The roots a, are real
for n > 1 and lie in the intervals [ap,-7/2, a@ngl, and
the values of A corresponding to them are positive.
The root a; belongs to the intercept [0, ay] only for
B < p*, where B* is the root of the equation 3 th g =
= 28, The root a; becomes zero for g= g*, and for
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B > B* a pair of imaginary roots! appear a = £ iy;.

If we set a = ix and write Eq. (26) in the form F{y,

B) =0, then F(8, B) =0, FL(B, B) >0, Fxx"(8, B)>0.
Consequently, the root of the equation F (x,8) = 0

close to 8 and specified approximately by the for-

mula

2Fy' (8, B)

SR R )

(27)
is always less than B. Since it is zero for g = g%, it
is clear that g for any 8 > p* and x; — B as g in-
creases. For 8 > 1we find x; ~ 8 — 28%/3 ch B,
making an approximate calculation of the right hand
side of (27).

Positive values of A also correspond to the ima-
ginary roots iy,

A=p%+ a? = p? — x2 = 4B*/ 3 ch?p. (28)

This proves that for the hyperbolic function (17)
the system is stable with respect to very long-wave -
length perturbations.

The results we have obtained, and the analogies
with other physical phenomena quoted above, allow
us to suppose that instability with respect to long-
wavelength perturbations in the system under con~
sideration appears in the case when the conductivity
increases with an increase in temperature so fast
that @y (Ty,) = 0 for Ty — «», i.e., when the solu-
tion of the stationary problem is nonunique for
¢y < o* and does not exist for oy > a*,

An instability analysis in the case of short-wave -
length perturbations is considerably more complex.
A relatively simple investigation may be made only
in the case when k is sufficiently large, so that we
may neglect the first term in Eq. (9) in comparison
with the last. If (17) and (22) hold, then we have

2 2 L3
(t+25)o—2 L ogpy+ (h—tt 4 pr— 2

ey ) 0= 0

8(x1)=0,

eliminating ¥ from (8) and (9).

It must be kept in mind that for real a both
parts of (27) are even with respect to a, and so apart
from the root a, there also exists a root ay = -a,
which also vanishes for g= g*. It is clear that A >
> 0 correspond to the remaining negative roots.

2
Introducing the new variable ¢ = © (chgy)2tk 78,
we obtain

WJF(X“;,;?@)«%:(),
PN =0 0= f(f 1) (1 B

O R [

from (29).

The solution of Eq. (30) may be represented in
terms of elementary functions and so investigated;
however, there is no need for this, since for k >
> 1, B~1wehave 6  4/k? « 1,y =~ A —Kk&
Consequently, the smallest eigenvalue of A is posi~
tive and equal to k% in order of magnitude, Thus the
temperature distribution in this case is stable not
only with respect to long-wavelength perturbations,
as was shown above, but also with respect to short-
wavelength perturbations with k > 1.
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